Ag 101 Week 46

Efficacy

 

 ef·fi·ca·cy

/ˈefəkəsē/

noun

1.     the ability to produce a desired or intended result.

"there is little information on the efficacy of this treatment"

synonyms:

effectiveness, success, productiveness, potency, power;

Before moving on to talking about trace minerals and sulfur, I wanted to discuss a word I find myself using often. I even found myself having a conversation about this topic with my acupuncturist this week.

I arrived for my appointment, and he noticed I have a cold. He told me before we could move forward working on my leg and arm; we would need to treat the cold, so it doesn’t go any deeper into my system. That alone is another topic for a post, but I’ll save it for later.

As we were discussing some options for herbs I could take, he spoke about a common over the counter remedy that contains Chinese herbs for colds. He mentioned the reason why people do not see the results they want is twofold – timing and overuse. As I was sitting there listening to him, I thought, “Umm, that’s much like issues some growers experience.”

To realize somethings full efficacy; it’s ability to produce a desired or intended result, you need to use the right source, use the right rate, have the right timing, and in the case of fertilizer, amendments, hebicides, and pesticides have the right placement.

A chemistries efficacy becomes even more critical in the case of trace minerals because they are required in such small amounts.

I’ve spoken at length about the right rate, timing, and placement in the following two posts

https://www.theaccidentalagronomist.com/news/2018/2/5/ag-101-week-6

https://www.theaccidentalagronomist.com/news/2018/2/25/ag-101-week-10

Since week 41 I’ve talked at length about the right sources

The best example of chemistry losing its efficacy is in the case of herbicides. We have heard year after year of more weeds becoming herbicide resistant and even developing into superweeds. More and more I am hearing about common chemistries on the organic side of agriculture losing their efficacy as well. Things such as copper, Bt products, and even my favorite kelp are having to be applied at higher and higher rates to see any results.

So, how does a farmer avoid overusing inputs-

1.     If possible, use cultural practices such as mowing, minimal tillage, removing debris, etc.

2.     Identify the problem correctly, whether it is a pest, disease, or nutrient related

3.     Use the proper chemistry for the issue

4.     Rotate with several chemistries that work synergistically with each other

5.     Most importantly do not use more than the recommended amount of the chemistry

6.     If chemistries are needed, follow the 4R Principles laid out in the previous weeks 6 & 10 links

Remember the adage, “If a little is good, more must be better.” Isn’t always the case.

Ag 101 Week 45

Calcium & Magnesium

 Image courtesy of Google Images

Image courtesy of Google Images

One of the fascinating aspects of soil nutrient balancing is the interactions each mineral as within the soil matrix and other nutrients. The Mulder Chart is an excellent illustration of that. It also shows the certain dominance cations like calcium and magnesium have over others.

If you recall in week 39, we discussed pH and how you use pH to adjust cations and anions. The relationships they have with each other need to be taken into consideration as well as the roles they play in soil and plant health.

 https://www.theaccidentalagronomist.com/news/2018/9/23/ag-101-week-39

Calcium and magnesium are two of the major players when balancing soil nutrients. Their ratio is one of the most talked about in the world of soil nutrient balancing. Whether you are of the school backing the ideal 8:1, or some variation of, it can’t be denied the importance of both to not only plant health but soil health as well.

If you recall in week 29, we discussed cation exchange capacity (CEC), and I use two side by side fields to illustrate the power of calcium

https://www.theaccidentalagronomist.com/news/2018/7/16/ag-101-week-29

It’s calcium’s critical role that brings it front and center in not only soil but plant health as well.

Here are nine critical roles it plays

1.     Calcium is a flocculating agent that helps stabilize clay and organic matter leading to aggregate stability.

Calcium and to some degree magnesium, help chemically bind clay and organic matter helping with better drainage and erosion control by making the soil more stable.

2.     Proper moisture balance, created by aggregate stability in soil leads to a healthier microbial environment

3.     Calcium can neutralize excessive soil conditions, dependent on the source, leading to more robust root growth

4.     Reduce weed pressure

5.     Reduce leaching of other nutrients

6.     Calcium has also been likened to a nutrient filter whereas it regulates the movement and availability of such nutrients’ as sodium, phosphorus, iron, aluminum, and boron

Specifically, in plants

7.     Calcium is responsible for proper cell division and cell wall development.

8.     It plays a role in nitrate uptake and metabolism

9.     It represents a role in enzyme metabolism

Calcium is not mobile on its own in the soil or the plant, leading to the need to be continually supplied. It is transported through the xylem in the plant and dependent on water to complete the process. This is why tomato blossom end rot is not a calcium issue as much as it is an irrigation issue. Without a consistent water supply, calcium cannot move into the plant, hence rendering it calcium deficient.

Magnesium is just as vital to a plants’ health. Several roles it plays are-

1.     It is the central element in the chlorophyll molecule

2.     Carries phosphorus into the plant

3.     It activates and is a component of plant enzymes

4.     Aids in plant oil and fat formation

5.     Helps control nutrient uptake by the plant

6.     Aids in nitrogen fixation

One of the main concerns with magnesium in forage crops is grass tetany. It is a metabolic disease when an animal is deficient in magnesium.

Factors that lead to it are-

1.     Low levels of magnesium in the soil

2.     Soils higher in potassium

3.     Long periods of cool or cloudy weather in spring

4.     Poor soil drainage

5.     Moving animals from indoor to outdoor feeding

Magnesium can be often overlooked due to the fact it does not always translate to a higher yielding crop, just a more nutrient dense one.

Potential organic sources of calcium and magnesium

Aragonite- Typical analysis is 33-40% calcium

Aragonite is a readily available calcium source. It can be applied in the spring and be available that growing season. It also has a far greater liming effect than once realized, while providing trace minerals and biology to the soil. Raw aragonite brings with is biology from the sea, acting as a built in inocculant.

High Cal Lime- Typical analysis is 38% available calcium

Best used when there are no need for magnesium. Sometimes referred to calcitic limestone

Dolomitic Lime-Typical analysis is ~21% calcium ~11% magnesium

Use when both calcium carbonate and magnesium carbonate are needed

Oyster Shell- Typical analysis can be as high as 96% calcium carbonate

Used as a source of calcium and trace minerals

Wood Ash- Typical analysis is ~32% calcium oxide 3-7% Magnesium

Wood Ash is considered a liming material, supplying about 50% calcium carbonate. Care should be exercised that it is not over-applied due to its rapid reactive nature

Gypsum- Typical analysis is 18-23% calcium 18-29% sulfur

Gypsum is used to correct alkaline and sodic soils. It can improve the structure of heavy clay soil and supply calcium and sulfur when a pH adjustment is not necessary. Can be used to add calcium if magnesium is not needed and soil tests show lower sulfur. Does not remediate sodium issues alone, irrigation is still needed

Bone Char- Typical analysis is ~25% calcium

Has varying amounts of NPK, but is also high in calcium. Bone char has more surface area to bone meal making it more reactive especially at higher temperatures

Crab Meal- Typical analysis is 11-18%

Crab meal is a slow-medium release nitrogen source. It can also be a calcium source depending on how much shell is mixed in. Crab meal also contains an enzyme chitosan, which helps plants build a robust immune system, increases germination rates, and repels parasitic insects and nematodes. Due to the expense, it is often used in fertilizer blends more than a stand-alone.

 Epsom Salt (Magnesium Sulfate)- Typical analysis is 10% magnesium 18% sulfur

Epsom salts are a good source of magnesium and sulfur. Can be used as a dry application or foliar. Care should be taken when you spray so not to burn plant tissue

 Sol-Po-Mag- Typical analysis is 0-0-22 11% magnesium 22% sulfur

Sul-Po-Mag is a medium to fast release source of sulfur, potassium, and magnesium. It is also known as K-Mag or Langbeinite

 Aragonite & Epsom Salt

Aragonite & Epsom Salt

Ag 101 Week 44

Potassium – Quality vs. Quantity

Last week was not my best post. Sorry. I explained how I haven’t been feeling the best and frankly writing on a good day is hard enough for me. It’s harder yet on days where I pretty much want to go back to bed.

I’m thankful to be in a position in life I can set my own pace, make my schedule, and I have supportive friends, family, clients, and followers.

According to the doctor, I’m not dying. I needed a different medication to reduce the inflammation and eight weeks of therapy. I’ve also decided to make a few more modifications to my diet to keep improving my health and help elevate the grouchy disposition I have had lately.  I’m giving up coffee; it might get worse before it gets better.                 

Enough with the pity party, now let’s talk about potassium!

I have to admit, potassium (K) is one of my favorite nutrients to talk about. I’m pretty sure it’s because it is a quality vs. quantity factor. I often refer to it as the dessert part of a meal for your plants, and let’s face it that’s my favorite part of the meal. Rely on nitrogen and phosphorus to push yields, but hand it over to potassium to develop kernels, fruit, and blooms. To top off my love affair with it, some of my favorite organic inputs are sources of potassium.

One of the best resources I have that talks about potassium is the Soil fertility Manual published by the Potash & Phosphate Institute of Canada.  I find it to be a valuable resource for soil fertility in general as well.

Here are a few things potassium plays a role in-

1.      Helps ionic balance in plant cells

Ionic balance is the relationship between cations and anions. Which leads to turgor, known as the pressure within the cell wall of a plant that keeps it from wilting.

2.      Helps a plant to overcome diseases

3.      Help a plant to over winter

4.      Helps with optimizing enzymatic systems that regulate plant growth

5.      Helps develop fruit quality, size, taste, color, and storage length

Potassium can be a difficult nutrient to manage in a sense it is not particularly mobile in the soil, except sandy or high organic matter soils. It also has an interesting relationship with calcium and magnesium making it a nutrient of particular concern in forages. Too much potassium can slow down bacteria develop in the gut of a rumen. Too little can lead to fertility issues. My dad is the animal nutritionist, and I’m the agronomist. We have a long-standing conversation about how to balance potassium for optimal plant health vs. animal health. He politely reminds me agronomist are notorious for being cow killers. Since certain crops like alfalfa are considered luxury consumers of K, meaning they will utilize considerably more than they need, much like when I eat cheesecake, the plant will take up as much as you put down. This will produce a great crop but not necessarily healthy for your animals. I can also hear him repeating, “ Alfalfa, Medicago sativa L., is the queen of the farm. Treat her well and she’ll treat you well.”

Thank you, Dad, for keeping me in check.

Potassium exists in three forms in the soil-

Unavailable- This is the form found in the mineral fraction of the soil. It takes the process of weatherization to release and is therefore only available in the soils that are in regions that are well weathered. They are often depleted due to miss management.  

Slowly available- This form is fixed in layers of potassium silicate clays such as greensand. As the clay shrinks and swells during dry and wet periods the potassium is slowly released.

Available- this form is found in the soil solution held by the cation exchange capacity -the fraction of the soil made up of organic matter and clay- but can only account for about 10lbs/acre or less of available K to the plant. Definitely not sufficient for a growing season.

What are some organic sources for potassium-

Manures- Typical analysis 1-3% Medium to rapid release

Great source especially sheep and bat guano. However, care needs to be taken that you are not over applying and causing the very issues you don’t want like disease and insect pressure.

Alfalfa, Cottonseed, and Soybean Meal- Typical Analysis 1-2% Slow to medium release

These are an all-around season long suppliers of not only nitrogen, a small fraction of phosphorus, but potassium as well.

Refer back to week 42

https://www.theaccidentalagronomist.com/news/2018/10/14/ag-101-week-42

Wood Ash- Typical analysis 3-7% Fast acting

I list this one hesitantly, however, feel it should be talked about. It can be a good addition especially to a compost pile that has time to rest. The challenge with wood ash is it is over applied and changes the chemistry of the soil quickly due to its particle size and makeup. The adage, a little goes a long way is fitting.

Sunflower Hull Ash (K Ash)- Typical analysis 34-36% K Availability dependent on mesh size and pH of soil being used in.

Sunflower hull ash is a relatively new product. Although it has some added benefits of having about 4% phosphorus and trace minerals, it should not be used in the soil the has a pH of 7 or higher. It has a pH of 8-10 making its applications limited to particular situations.

 Potassium Sulfate (SOP)- Typical analysis 50-52% Fast acting

I often have greenhouse growers run SOP at certain points of the growing season to help keep the plant producing and yielding a marketable size fruit such as tomatoes and cucumbers. It is soluble and has sulfur which can help mitigate higher pH’s that greenhouse growers are sometimes challenged with.

Granite Dust- Typical analysis 3-6% Very slow release

As mentioned earlier this is a source of potassium that takes weatherization to release the available potassium that is in the matrix of the granite.

Sul-Po-Mag (Sulfate of potash magnesia, K Mag)- Typical analysis 22%K 22%Sulfur 11%Mg Medium to fast availability

Much like SOP, it is relatively soluble depending on particle size.

High K & Low K Seaweed Shakings- Typical analysis ~27% High K, ~5% Low K

Generally used as a component in a fertilizer blends.

Kelp- Typical analysis 4-13% Slow to medium release

Kelp can be used as a liquid concentrate, powder, or meal. It can be attributed for being part of all five of the previously listed roles K plays in plant health. If I was reduced to recommending one product kelp would be it. That being said you still need to use it judiciously as to not decrease its efficacy.

Refer to week 22 & 38 for more specific uses.

https://www.theaccidentalagronomist.com/news/2018/5/27/ag-101-week-22

https://www.theaccidentalagronomist.com/news/2018/9/9/ag-101-week-38

Greensand- Typical analysis ~5% Very slow release

I could list other clay-based materials as well. However, greensand is my favorite, especially considering what it is capable of while being a good source of K and trace minerals. When I got into organic agriculture and was working for a fertilizer company, I had never heard of anything like greensand. They would explain greensand as being magic. It could loosen tight soils and tighten loose soils. Not being satisfied with the supernatural explanation, I came to learn the power of greensand is in the structure. It has a unique layered structure unlike any other clay giving it the ability to correct a variety of soil structure issues. Hands down I would use greensand before any others. I often recommend a 50/50 mix of greensand and kelp.

Refer to week 28 for a brief overview of clays

https://www.theaccidentalagronomist.com/news/2018/7/6/ag-101-week-28

 

 Greensand & Kelp

Greensand & Kelp

Ag 101 Week 43

Phosphorus

I had to have some help with this weeks’ post.  Here’s the backstory-

Since July I have had health challenges. It started with pain in my right leg and has now started in my left arm and hand. I have never liked typing; now it has just become physically painful.

I was going to ask my husband for help with typing, but he reluctantly had to go to Texas for work. So, I called a friend to see if they could help me and we ended up going to the emergency room instead. While waiting to see the doctor, she pulled out a notebook to start taking notes and being the amazing English teacher that she is, began with a Venn diagram.

I was called back before we could finish.

To make a very long story short after several visits to the doctor’s office the past few months, and a trip to the emergency room this past weekend I now have an appointment to see a specialist later this week and will hopefully have more answers, and a plan has to how to move forward.

I have had no desire to even think about this weeks’ topic let alone write about it.

However, I’ve committed to offering something every week.

I got the bright idea to finish the Venn Diagram add a few more notes and call it a day.

Not my original intention, but who doesn’t love a good Venn diagram about phosphorus!

20181022_100233.jpg

My only regret- Not having my friend finish it. Her handwriting is so much better than mine.

Ag 101 Week 42

Nitrogen

20181014_143709.jpg

 

Last week I said I was going to start and break down what goes into a bag of fertilizer. If you recall, I likened each component to a piston in an engine. Put the right pistons together, and you get a locomotive engine, put others together, and you get a Yugo.

You buy a bag of blended fertilizer, and you are getting a mix of nutrients that supply a plant with nitrogen, phosphorus, and potassium - NPK. In some cases, you can get some magnesium, calcium, sulfur, and trace minerals. I’m sure most of you know that already.

So, I want to go over a few questions I get; then we’ll take a look of some more commonly used components within the organic or softer chemistry area of fertilizers.

Why are the numbers, otherwise known as NPK values, so much lower in organic fertilizers than conventional?

The numbers representing NPK are a ratio of the percentage of available nutrients. The amount of the nutrient that is soluble and readily available for the plant to use. The more solvent, the higher the number and the more significant amount that the plant can uptake sooner. In the case of organic fertilizers, you have to also consider variabilities due to the fact components are naturally sourced materials, i.e., mined from clay deposits or animal by-products. Nature is not always consistent. One of the best benefits of organic fertilizers is a more extended nutrient supply over the growing season given the fact they are comprised of soluble and insoluble forms of nutrients. Given adequate moisture, biological actively, and crop type a natural fertilizer can take you through from planting to harvest. Once again, I stress it is crop specific and dependent on other management decisions. I will often suggest a split application if at all possible or fertilizing with a liquid to get through a season depending on all the variables.

Keep in mind from week 5 when fertilizing you are feeding the plant and the soil. Some are hungrier than others and at a different rate.  

 https://www.theaccidentalagronomist.com/news/2018/1/21/ag-101-week-5

What is the difference between soluble and insoluble nutrients?

A soluble form of a nutrient is readily available to the plant for immediate uptake. Insoluble nutrients are held in the soil longer and need to be converted to plant available forms by the bacteria and fungi present in the soil. Other factors determining the rate at which they become soluble are soil moisture, temperature, and pH.

 What does it take to ensure a fertility program is effective?

1.      pH management -You want to manage pH to accomplish two things

First be in a range for optimal nutrient uptake based on soil type and crop variety while staying slightly acidic to help make nutrients available through mineralization and biological activity.

2.      Irrigation management

A fertility program is only as effective as your irrigation.

3.      Good amendment & fertilizer practices

Fertilizing is strategic and should be applied at the right rate, time, location using the right source. I discussed that in weeks 6 & 10

https://www.theaccidentalagronomist.com/news/2018/2/5/ag-101-week-6

https://www.theaccidentalagronomist.com/news/2018/2/25/ag-101-week-10

You could say I’m finally getting around to talking about the fourth – the source.

Let’s talk about nitrogen-

Nitrogen is used for several functions in the plant including the production of proteins that lead to tissue development

It also plays a role in chlorophyll production.

It is critical in leading to the vegetative growth in a plant but can become problematic when over applied for several reasons.

Such as-

Environmental issues

Increased insect pressure

A plants’ inability to retain blooms, such as in tomatoes

Balancing a plant’s need for nitrogen at the time it is required by the plant is a matter of timing it’s application. Even though it is abundant in the air we breathe, unlike phosphorus and potassium, it is not found in sufficient levels in the soil because it is not present in the parent material giving soil its properties.

By themselves, plants cannot use atmospheric nitrogen. It has to be converted by nitrogen-fixing bacteria in the form of NO3¯ or applied in a plant available form at the right time.

Due to the fact, the form most available to plants has a negative charge, it is not held in the soil and is more sustainable to leaching. If you recall, the cation exchange capacity is a soil’s ability to hold onto positively charged ions.

Nitrogen management is centered around optimizing nitrogen fixation by the soil biology and minimizing loss by using good management practices such as timing and location of fertilizers and manures.

With some conventional forms of nitrogen such as ones that are ammonium based, except ammonium sulfate, they have an acidifying effect on soil. Meaning they lower the pH. This can be an issue with over applying it and repeated long-term use. It is often not seen immediately but as somewhat of a cumulative effect based on cropping history, moisture, temperate, etc.

Over the past several years I have not seen that to be as much of an issue with organic sources. However, I have not found much research or data on the subject either. It should be noted that everything you put into the soil at some point in time effects it, whether immediate or long term.

Let’s talk about some common organic nitrogen components used in fertilizers.

First, I’m going to start with a three that are conventional component equivalents. Meaning they are still a naturally derived source, that can be used in an organic system but is more soluble and available to the plant quicker rather than later making them somewhat similar to that of conventional chemistries.

Blood Meal

It typically has an analysis of 10-13%N

It has been shown to have deer and rabbit repellant properties when used as a top dress. However, it may attract other animals such as raccoons and dogs.

Blood meal is primarily hemoglobin, which is a protein, and iron. In my experience, I have found the concentration of iron not to be an issue, just something to be mindful of

It can be cost prohibited to use it as a single source of nitrogen. However, when added to a blend It is a rapid release source making it a significant component when used with other mid and slower release forms

Chicken Manure

Of all the manures it is, in general, the one highest in nitrogen typically ranging from 2-8%

Keep in mind the analysis of manures of any type can be extremely variable based on source and solid to liquid ratios

It is available in several forms from liquid to pellets and relatively inexpensive depending on what part of the country you are in

It is also a good addition if lime and phosphorus are needed

Sodium Nitrate (Chilean Nitrate)

It is water soluble at a guaranteed 15% total N availability, with 2% potash, and 1% sulfur. The new formulation has allowed for ease of shipping because it is no longer considered a hazardous material.

The fact it is readily solubilized in water makes this the best choice for a starter fertilizer, especially for corn. It gives corn the boost it needs to get out of the ground even if planted into soils that might be cooler than what is generally required to get the best germination rate.

It can be an expensive insurance policy if not used accordingly and applied with good seed to fertilizer placement at the right rate. This is when cleaning, calibrating, and using the right equipment are essential as well.

I highly recommend using it in a blend as opposed to a straight source of nitrogen for several reasons. First, it can be expensive. Second, it is available almost immediately to the plant, making it the first to be used during the growing season, leaving the plant with nothing in reserve for the next several weeks that nitrogen is vital to develop enough vegetation for the plant to efficiently and adequately be able to perform photosynthesis. Remember it is a balance between vegetative growth and reproductive growth.

Next, the following have medium to slow release rates of nitrogen. They are relatively insoluble.

Fish/crab/shrimp meal

Typical analysis ranges from 5-30%N

Typically, fish ranges from 5-9%N depending on whether it is a meal, powder or liquid

Crap and Shrimp range from 10-30%N with 11-18%Ca depending on the shell to meat ratio

Crab makes an excellent addition to a fertilizer blend for the extra calcium, and the addition on an enzyme called chitin that has been shown to help control nematodes in the soil

Peanut meal

A typical analysis is 8-9%N

Can be cost prohibitive and not allowed due to allergen restrictions

Bone meal

A typical analysis is 3-4%N

It is also a good source of phosphorus and calcium

Feather meal

Typical analysis 11-15%N

Apply early in the season to take advantage of slower release rate providing nitrogen over the course of the growing season

 Soybean meal

A typical analysis is 6-7%N

A good source for full season nitrogen supply

Soybean meal has been shown to burn new seedlings and reduce germination rates potentially. Care should be exercised when timing the application

 Manures

For years now, agricultural manures have gotten a lot of press. After taking the PA Nutrient Management courses, I concluded – shit’s complicated. Gone are the days you cleaned the barn and piled it out of the way so you could spread it when you had more time. Raw manure is the most nutrient dense. The longer it composts it losses its nutrient value. Over applying it, can lead to not only environmental issues also pest and disease challenges.

However, there is one manure that is gaining popularity with tobacco and cannabis growers, and its bat guano. It is cost prohibitive to use on a large scale, but I feel it is important enough to mention as a potential source of not only nitrogen but phosphorus as well, while being low in salts.

A typical analysis is 5-12% depending on the source

It is fast acting and soluble in water making it a great addition to a liquid program for cannabis especially vegetative and flowering stages

I have several growers using it in sub-irrigation systems for starting organic tobacco. They like the fact its water soluble and doesn’t seem to burn the way other fertilizers have a tendency to do if not managed correctly.

 There are several other sources I could mention that are used for nitrogen such as corn gluten, alfalfa meal, legumes, and cottonseed meal.

We’ll cover those and more during the time remaining in the 52 Weeks of Agronomy Series.

Ag 101 Week 41

It’s Not Just Fairy Dust & Go-Go Juice – It’s Chemistry

20181005_170927.jpg

Five years ago, when I told my Dad, I was going to work for an organic fertilizer company there was a long pause of silence.  After some more discussion he concluded that it must not be that big of a company so why not get back into the workforce with a small local business. Little did we know what I had gotten in to.

It was culture shock in more ways than one.

If you recall, I’m the girl that still thinks Kenny & Dolly are platonic and…

I didn’t come from the world of ‘organic/all-natural’ fertilizers. I came from a long line of tried and true conventional farming chemistries and practices that my family still uses today. Chemistries that are not even an option for or for that matter are even somewhat shunned by over 50% of the growers I currently work with. I almost titled this week’s post, “I Go Both Ways.” Because I work with all types of farmers/growers; large, small, conventional, certified organic, everything in between, and the list keeps growing.

Here’s why-

Agronomy is a universal language spoken between the soil and the crop. Fertilizers and amendments are chemistries, whether they are naturally or synthetically derived, that are used to increase the efficiency and effectiveness of the soil and plants communication. Whether it is a by-product of industry, created in a lab, dug up from a mine somewhere from around the world, hauled out of the ocean, or an extract from a plant it is chemistry. All need to be used responsibly to ensure the future of farming, our food supply, and the environment.

As I started learning and getting more and more familiar with the world of organics I brought my dad to meetings so he too could learn and hear about the fascinating ways which they use all the amazing resources our world has to offer.

After one meeting, while we were having coffee, he said, “I guess I was wrong Monica. The way you explained things made me realize it’s not just fairy dust and go-go juice. You have a mighty big task ahead of you to get both sides to realize that and the farmers that use them to do so as efficiently and effectively as possible.”

Don’t be fooled; I still get the funny comments like, “Do you make them spin in three circles before sprinkling the fairy dust, or do they sprinkle then spin?” Or, “Why does go-go juice attract so many cats?” Better yet, “What’s Monica bringing to the family reunion? Fish and kelp, haha!” However, my dad has come a long way from the once staunch naysayer to one of my biggest supporters, and for that, I am very grateful.

Ask my neighbor; I also make several recommendations with conventional chemistries I don’t even mention in some circles. While we are working in our gardens, she graciously listens as I tell her about the fine line I walk between both worlds.

Considering I have ‘a mighty big task ahead of me’ and we are at a point in the growing season that farmers should be soil testing to make amending and fertilizing decisions, over the next several posts we’re going to talk about what makes up a bag of fairy dust otherwise known as organic fertilizer.

If you recall I’ve talked about how fertilizer blends are not always one size fits all. I do find myself recommending more amending and management options before fertilizers to most farmers. However, the more you understand what each component can do, the more informed decision you can make.

https://www.theaccidentalagronomist.com/news/2018/3/3/fertilizers-and-pajamas

Just as I stated in Week 11 comparing fertilizer blends to pajamas, there are fillers added to them for specific reasons ranging from making up the volume to helping the product flow through manufacturing and spreading equipment. Those ‘fillers’ come with consequences both good and bad depending on whether you are aware of them and can plan in others areas of your fertility management. However, using a blend can extend a fertility plan and reduce the number of applications if careful consideration is made when choosing which one you use

Look at a bag of fertilizer as an engine, and each component in that blend has a piston, understanding the specific function of each piston is key to buying the right fertilizer and more importantly using it the best way. That knowledge along with a soil test and knowing the type of soil you’re working with is what gives you the necessary pieces of the puzzle in putting together a sustainable fertility plan.

 Not quite the look I was going for, but thank you Google Images for the help

Not quite the look I was going for, but thank you Google Images for the help

The link below is a free e-book titled Understanding Amendments & Fertilizers I put together over a year ago. I’m in the process of updating it and offering this one to you as an intro to organic and all-natural amendments & fertilizers for signing up to receive news and updates.

Over the next several weeks we’ll cover nitrogen, phosphorus, potassium, and trace mineral components that make-up what goes into a bag of fertilizer, and you’ll see it’s not just fairy dust and go-go juice.

Ag 101 Week 40

No Assembly Required

I posted this graphic on Instagram this week. At the time, I had planned on writing a lengthy explanation as to what I meant and at the last minute deleted. I wanted to see what kind of response I would get.

IMG_20180928_103757_898.jpg

One person asked if I was against soil building techniques. The following was my reply

“Not against good management practices at all. They are part of what it takes to be good stewards of the soil. But, soil comes pre-assembled. It’s like a set of shelves that are ready and waiting for you to start stacking books on. Or better yet, to start using and storing nutrients in for the microbes and plants that rely on it. All you need to do is take time to understand the specs the shelves came with, or what I refer to as the inherent characteristics your soil came with. We amend, which is a temporary change to the physical and chemical characteristics and we fertilize which is strategic and is intended to feed the biology in the soil and the plant, depending on the type of inputs you use. Neither build, they complement what’s already there.”

Another person explained, “permaculture allows for amendment added in 1-foot layers starting from a depth of 6 feet below grade. That’s building soil…The amendments are specific and by their nature create a mycillium layer right at the frost line. “

To this, I responded

“If I understand correctly, you still have the parent material left. For lack of better terms, that is what ‘builds soil’ and dictates its characteristics. I have long wanted to understand permaculture better and have not taken the time to do more research on it. If you have any good resources I would love to read more about it.”

If indeed taking away the top six feet is what permaculture prescribes, it seems pretty destructive to me. Here again, I don’t know that much about it.

Three things I want to point out-

1.     Soil doesn’t know and or understand any of this. It comes the way it is and has had stuff growing in it way before we got here. We need to either work with or against it. It is selfish and doesn’t follow trends.

2.     If people understood the difference between amending and fertilizing that alone would save them money and have a more significant impact on helping the environment than some of the other things we do.

3.     Long-term soil fertility, the kind that keeps soil healthy and you and the next generation farming and eating is a balance between the actual make of the soil specifically the clay fraction, organic matter management, and the physical management of it as well.

The notion that we build soil has been around for a while now. You see it phrased that way on social media, industry gurus say it all the time, everyone who’s anyone has used the term at some point in time. It sounds powerful and gives us a sense we are in control. It is what good marketing is made of. It’s even on one of my favorite books, Building Soil for Better Crops by Magdoff & Van Es. If you’re in the industry, you want to jump on the bandwagon and ride the wave of being known as the one who builds the best soil ever! Right?

Here’s the challenge I have with the statement, “build soil”-

We can’t build soil. It comes no assembly required. You don’t open a box like you do from Ikea and put the pieces together.

It comes pre-assembled with both physical and chemical characteristics that we can’t change. They are dictated by its parent material. We have nothing to do with it. The soil is what it is, and we have to except that.

I talk about those in weeks 8 & 9

https://www.theaccidentalagronomist.com/news/2018/2/11/ag-101-week-8

https://www.theaccidentalagronomist.com/news/2018/2/15/ag-101-week-9

However, there is one thing we can do. We can amend it. But, there’s another kick in the pants. No matter what amending you do, no matter what type of amendments you use it is only temporary. It doesn’t last forever. Soils main objective is to go back to what it originally was no matter what we try to do with it. You always have to be tinkering with it to keep it the way you want it.

I hate to say it, but there is no Ronco Set It & Forget It when it comes to soil. It is a constant work in progress.

I have said that organic matter gets all the attention and clay is often overlooked while being misunderstood for what it brings to the table in soil management.

If I were to put it into somewhat crude and simple terms

Organic matter

is the girl you want to date. She’s fun, easy to get along with, doesn’t require much attention and is relatively inexpensive. It is the most biologically active fraction of the soil. It does have a negative charge due to humus. However, it is referred to as being loose because it doesn’t have the structure that clay does. Humus, all though being somewhat stable breakdowns faster than clay and needs to be replenished to keep nutrient holding capacity and availability in check.

Clay

is the women you want to marry. However, she requires more strategy. She won’t go for just dinner and a movie. She might need something more expensive to keep her happy. However, if managed properly and the timing and application are well thought out and strategic, it will be well worth the effort and expense.

When you have a balance of both organic matter and clay you get married and live happily ever after. I realize my analogy is probably offensive to some, but it illustrates my point.

All of this leads back to knowing your soil type, getting a soil test and balancing the biological, the chemical, and the physical.

Ag 101 Week 39

pH

Why is pH so important?

The following is a conversation that started from a post I published called Amending Vs. Fertilizing from Week 5 on an agricultural social network called Agfuse. To see the post in its entirety, go to www.agfuse.com and sign up for a free account.

https://agfuse.com/article/amending-vs-fertilizing

Pat Rogers, the founder of Agfuse responded with-

“I am continually baffled by long time farmers in my area who still don't see the value in getting your pH right. To me, it's the foundation of farming. An optimal pH leads to more efficient nutrient use which in turn helps us grow better crops (on less fertilizer no less). A good fertility plan that isn't used in combination with a good ph/amendment plan is pretty useless if you ask me.”

I replied-

“If you think of the soil as a digester similar to a gut, managing pH to be slightly acidic keeps it operating effectively to assimilate nutrients that are already present or being added in the form of manures and fertilizers. I often explain it as if you are taking advantage of what is inherently present and using what might be added as efficiently as possible. A healthy gut or soil, one being slightly acidic where as good bacteria and fungi flourish does that. pH is the linchpin to creating that environment conducive for healthy flora to thrive. 
Often, I think we don't understand all the ways pH is useful or even what drives it. It can also be a hard concept to grasp. I liken it to an abacus. You're using calcium, magnesium, sodium, and potassium, etc. balancing pH -hydrogen, to encourage a healthy system. And as you mentioned, grow a better crop with less or no fertilizer.”

It influences what nutrients will be available to the plant by having an effect on the mineralization of rock minerals and encouraging balanced soil biology for more efficient use of those minerals. 6.0-6.5 is the ideal range for most crops. However, a pH range of 6.8-7.2 can be tolerated by some as well.

The following is a chart showing at what pH nutrients are available

 Google Image

Google Image

An obvious example and one I deal with on a regular basis are blueberries.

They are a great example of two things

1.     Pre-planning based on soil type and chemical characteristics is imperative

2.     pH is the linchpin of any long-term fertility plan

I think I said it best in an email to a client when giving iron sulfate recommendations for an established blueberry patch having some issues

“Iron can be indicative of the type of soil you have. Some soils are naturally higher or lower in iron or have varying amount due to previous uses. The challenge with blueberries is they can't use the iron that is present because it is bound in the soil due to the pH being so high. You have to give it to them in a form that is readily available until you adjust the pre-existing pH. Then you should be able to stop amending with the iron sulfate, and they will be content with what is available to them. This is why pre-planning is probably the most critical when it comes to blueberries.” 

I’m going to go one step further and clarify that pH is something that needs to be consistently monitored because the soil always wants to go back to its inherent traits. For example, I want blond hair, but I’m a brunette. If I want to keep my hair blonde, every four to six weeks I have to dye the part that has grown out, because inherently it grew out brunette. Just as you want to grow blueberries, every 1-3 years you need to have a soil test done and need to be using the necessary amendments to ensure the pH will be within a range conducive for growing them.

To adjust pH, some common amendments are

High calcium lime

Dolomitic lime (high magnesium lime)

Aragonite

Elemental sulfur

Fall is a great time to soil test. It is also a great time to amend soil to have the time necessary to prepare for the next crop.

 For a free printable pre-planting application chart for adjusting pH

Sign up for The Accidental Agronomist Newsletter

Ag 101 Week 38

A Podcast and Garlic

This week the post for the 52 weeks of Agronomy is going to be a link to a podcast I’m recording tonight for The Vegetable Gardening Show with Mike Podlesny.

http://www.averagepersongardening.com/about/about.php

You can check it out at that link, Facebook, and YouTube


Since it won’t be available until Sunday the 23rd I though I would give you a bonus all about garlic.

20180807_145926 (1).jpg

It’s getting to be that time of year when you are going to be thinking about planting and I have the Cadillac of fertility recommendations for it. Old school rule of thumb says plant garlic around Columbus Day.

Typically, garlic is a scavenger when it comes to nutrients in the soil and will do well under a variety of growing conditions. But if you want to grow the best of the best I came across this all-purpose mix and cover crop rotation that is touted by the premier garlic growers in the northeast.

Cadillac Mix

25 pounds of Blood Meal

25 pounds of Bone Meal

25 pounds Raw Aragonite

12.5 pounds of Greensand

12.5 pounds of Kelp

 

Three Year Cover Crop Rotation

1st Mustard

2nd Buckwheat (Summer)

3rd Rye (Winter)

As always, I recommend a soil test before any amending or fertility plan can accurately be determined. But for a general fertilizer option why not use the Cadillac of all mixes!?

Ag 101 Week 37

Agronomy-It's Not Just Vague Lingo For Big Ass Profit Driven Farmers

 

I came across an article in The Modern Farmer from September 4th called “The Modern Farmer Glossary of Farm Jargon.” In it, they explain terms associated with modern day farming and one of them happen to be “Agronomy.” The author defines it as “the science of agriculture, specifically as it relates to industrial-scale farming and profit maximization.”

You can read the rest of the article here

https://modernfarmer.com/2018/09/the-modern-farmer-glossary-of-farm-jargon/

At that time I didn’t think much about it.

That is until I was getting this weeks’ post ready. For several weeks now I have wanted to go back and reiterate my role as an agronomist. I wrote a short intro and linked to the following post from before I started the 52 Weeks of Agronomy Series

https://www.theaccidentalagronomist.com/news/2017/3/26/whats-an-agronomist-anyway

Done! I went on with the rest of my day.

Then I remembered reading the article.

I reread it and thought to myself, “Whoever came up with that definition of agronomy did not go to college with me. Every professor I had explained agronomy as the science of crop and soil management.” The agricultural science phrase used in the article seems a bit vague and at no point in time did any of my professors say it was for industrial-scale farming and profit maximization. Was it implied you wanted maximum profit, sure? But we focused on the crops yield, soil health, and the strategies to achieve them.

Yes. I understand it is modern day language for modern day people. Yes. I realize I could be splitting hairs. No, I'm not saying there is anything wrong with big ass profit driven farmers. I'm related to some, and they are some of my favorite relatives. I'm a firm believer it will take all types of agriculture and farmers to feed us. There's a lot of us, and we all get hungry. 

But, hear me out.

I started to think about the word jargon and what it implies. Jargon is defined as-

Special words or expressions that are used by a particular profession or group and are difficult for others to understand.

Not buying that the word agronomy is mere jargon, I thought about how a technical term is defined. Technical terminology is-

The body of terms used with a particular technical application in a subject of study, theory, profession, etc.

That sounds more like the agronomy I know. It is a term used to explain the science of crop and soil management. 

textgram_1536491619.png

I know all too well that people have no idea what agronomy is or what an agronomist does, both in and outside of the industry. Tell someone you are an agronomist. I dare you. You will experience what I deal with every day. This is why I am referred to as The Dirt Lady that gives soil sermons! Can I get an AMEN!

And this is why I started the 52 Weeks of agronomy series in the first place. An entire generation, maybe more at this point who need it the most, is out there thinking agronomy is vague lingo that only applies to big ass profit driven farmers. That it has nothing to do with them. It is merely jargon. 

My definition of agronomy is-

the science of soil management and crop production no matter what size or type of farm

And as an agronomist it is-

my job to take the best science has to offer a farmer and make it practical for their situation so they can implement it to be successful

As for the notion, it is only applicable to industrial-scale farms; maybe this is why small-scale growers don’t know of and aren't implementing basic sound agronomic principles that would make them a more successful farmer? 

Maybe no one ever thought to teach or explain it to other types of farmers?  

I touch on this in week 9

https://www.theaccidentalagronomist.com/news/2018/2/15/ag-101-week-9

Since getting back into the Ag industry, I have long felt that the true meaning of what agronomy is and what an agronomist does is often overshadowed by marketing trends and mistaken for other Ag related occupations. 

And for some reason, that I have yet to totally figure out, the very people who need to understand agronomy seem to be dismissive and almost offended by what it has to offer them. 

Agronomy and the practical application of it's principles can make or break a growers success. Sure, anyone can get stuff to grow, but using your resources efficiently and effectively is what sets growers apart and helps them stay in business.  

If you have a garden, make a million dollars off an acre growing salad mix, milk two cows or thousands, have a pet chicken, raise any kind of livestock, grow crops in a hoop house high tunnel whatever you want to call it, grow blueberries in a container on your porch, have a 15 member CSA, or farm 10,000 acres agronomy is part of what you do. If it involves soil, plants, and the people growing them it involves agronomy.

To this accidental agronomist soil sermon giving dirt lady

Agronomy is–

Using soil and crop management principles based on science that can be practically applied by any scale or type of grower to be a prosperous sustainable steward of the land,

                                                                             not just vague lingo for big ass profit driven farmers.